Java大数据实战 Storm构建实时流处理

全方位解剖大数据实时处理利器Storm,让你在流式处理领域得心应手

 

〖课程介绍〗:

Storm是实时流处理领域的一柄利器,本课程采用最新的Storm版本1.1.0,从0开始由浅入深系统讲解,深入Storm内部机制,掌握Storm整合周边大数据框架的使用,从容应对大数据实时流处理!

〖课程目录〗:

第1章 课程导学 试看3 节 | 33分钟

介绍课程相关背景,学习建议等等

  • 视频:1-1 -导学 (20:17)试看
  • 视频:1-2 -OOTB环境使用演示 (08:49)
  • 视频:1-3 -授课习惯与学习建议 (03:39)

 

第2章 初识实时流处理Storm10 节 | 66分钟

Storm作为近几年Hadoop生态圈很火爆的大数据实时流处理框架,是成为大数据研发工程师必备的技能之一。 本章将从如下几个方面让大家对于Storm有宏观上的认识:什么是Storm、Storm的发展史、Storm对比Hadoop的区别、Storm对比Spark Streaming的区别、Storm的优势、Storm应用现状及发展趋势、Storm应用案例分享…

  • 视频:2-1 -课程目录 (02:08)
  • 视频:2-2 -Storm是什么 (14:40)
  • 视频:2-3 -Storm发展历史之从Twitter说起 (05:47)
  • 视频:2-4 -Storm发展历史之Storm的成长 (02:52)
  • 视频:2-5 -Storm技术网站介绍 (10:38)
  • 视频:2-6 -Storm和Hadoop的区别 (06:01)
  • 视频:2-7 -Storm和Spark Streaming的区别 (06:15)
  • 视频:2-8 -Storm的优势 (04:46)
  • 视频:2-9 -Storm当前现状与发展趋势 (04:57)
  • 视频:2-10 -Storm应用案例分享 (07:29)

 

第3章 Storm核心概念 试看8 节 | 56分钟

本章节将从如下几个方面带大家深入理解Storm的核心概念:初识Storm核心概念、通过日常生活的案例来理解Storm的核心概念、根据官网的描述来理解Storm核心概念、最后通过画图讲解的方式讲解Storm的核心概念。相信通过多角度对比进行讲解Storm的核心概念,让大家掌握的更加深刻。因为Storm的核心概念的理解是后续Storm课程学习…

  • 视频:3-1 -课程目录 (01:21)
  • 视频:3-2 -初识Storm核心概念 (06:52)
  • 视频:3-3 -Storm核心概念理解记忆概述 (04:07)试看
  • 视频:3-4 -Storm核心概念理解记忆之地铁运行模型 (06:56)
  • 视频:3-5 -Storm核心概念理解记忆之Storm (05:05)
  • 视频:3-6 -Storm核心概念小结 (02:11)
  • 视频:3-7 -Storm核心概念官网详解 (20:39)
  • 视频:3-8 -图解Storm核心概念 (08:20)

 

第4章 Storm编程12 节 | 103分钟

本章节将手把手带大家搭建基于IDEA+Maven的Storm的开发环境,通过案例融合Storm编程中常用API的使用以及开发过程中的注意事项。

  • 视频:4-1 -课程目录 (02:25)
  • 视频:4-2 -Storm开发环境搭建 (18:01)
  • 视频:4-3 -Storm核心接口ISpout详解 (14:39)
  • 视频:4-4 -Storm核心接口IComponent详解 (03:12)
  • 视频:4-5 -Storm核心接口IBolt详解 (08:33)
  • 视频:4-6 -Storm求和案例编程之Spout功能实现 (11:31)
  • 视频:4-7 -Storm求和案例编程之Bolt功能实现 (04:18)
  • 视频:4-8 -Storm求和案例编程之Topology提交功能实现及测试 (11:21)
  • 视频:4-9 -Storm词频案例编程之Spout功能实现 (08:33)
  • 视频:4-10 -Storm词频案例编程之Bolt功能实现 (06:14)
  • 视频:4-11 -Storm词频案例编程之Topology提交功能实现及测试 (08:42)
  • 视频:4-12 -Storm编程注意事项 (04:26)

 

第5章 Storm周边框架使用13 节 | 113分钟

本章节将带领大家学习Storm周边常用框架的使用,比如:ZooKeeper、Kafka、Logstash、以及Logstash与Kafka的整合使用。

  • 视频:5-1 -课程目录 (01:49)
  • 视频:5-2 -JDK安装 (09:33)
  • 视频:5-3 -ZooKeeper概述及环境搭建 (17:05)
  • 视频:5-4 -ZooKeeper使用详解 (08:46)
  • 视频:5-5 -Logstash概述及部署 (06:05)
  • 视频:5-6 -Logstash使用之控制台输入输出 (04:16)
  • 视频:5-7 -Logstash使用之文件输入控制台输出 (07:36)
  • 视频:5-8 -Kafka概述 (11:34)
  • 视频:5-9 -Kafka架构及核心概念 (04:04)
  • 视频:5-10 -Kafka单节点单broker的部署及使用 (16:34)
  • 视频:5-11 -Kafka单节点多broker部署及使用 (09:55)
  • 视频:5-12 -Kafka容错性测试 (04:39)
  • 视频:5-13 -Logstash使用之整合Kafka (10:20)

 

第6章 Storm架构及部署 试看11 节 | 117分钟

本章节将学习Storm的架构以及各个核心组件的功能、并搭建Storm的单机环境和分布式环境、如何提交/查看/杀死Storm作业、Storm UI界面参数介绍

  • 视频:6-1 -课程目录 (03:41)
  • 视频:6-2 -Storm架构详解 (17:32)
  • 视频:6-3 -Storm单机部署之前置条件及解压 (08:45)
  • 视频:6-4 -Storm单机部署之启动Storm各节点及Storm UI界面详解 (16:52)
  • 视频:6-5 -改写Storm作业并提交到Storm单节点集群运行 (18:18)
  • 视频:6-6 -Storm常用命令介绍 (06:29)
  • 视频:6-7 -Storm集群部署规划 (06:05)试看
  • 视频:6-8 -Storm集群部署之软件包分发和jdk部署 (04:19)
  • 视频:6-9 -Storm集群部署之ZooKeeper分布式环境部署 (09:13)
  • 视频:6-10 -Storm集群部署之Storm集群部署及启动 (19:01)
  • 视频:6-11 -提交Storm作业到集群中运行&目录树介绍 (06:39)

 

第7章 并行度9 节 | 54分钟

本章节将重点讲解Storm的优化中的核心:并行度调整(worker数量、executor数量、task数量),将通过对代码的修改并提交到Storm环境上去运行,结合Storm UI上展示的参数效果来进行调优,让大家对于Storm的并行度有更加深入的理解,本章节是学习和面试过程中重中之重,务必掌握。

  • 视频:7-1 课程目录_ (01:44)
  • 视频:7-2 -并行度概念详解 (13:43)
  • 视频:7-3 -如何将Storm集群模式更改为单机模式 (03:37)
  • 视频:7-4 -Storm作业运行UI页面上的参数详解 (04:21)
  • 视频:7-5 -worker数量的设置 (06:52)
  • 视频:7-6 -executor数量的设置 (05:14)
  • 视频:7-7 -task数量的设置 (04:56)
  • 视频:7-8 -acker的设置 (03:27)
  • 视频:7-9 -并行度案例讲解及并行度动态调整 (09:53)

 

第8章 分组策略6 节 | 37分钟

本章节将带来大家通过代码以及UI参数展现的方式来学习Storm中的常用分组策略:Shuffle分组策略、Field分组策略、All分组策略。本章节也是Storm开发过程中务必要掌握的部分。

  • 视频:8-1 -课程目录 (01:06)
  • 视频:8-2 -Stream Grouping概述 (14:03)
  • 视频:8-3 -Shuffle Grouping开发详解 (07:28)
  • 视频:8-4 -FieldGrouping开发详解 (07:23)
  • 视频:8-5 -AllGrouping开发详解 (04:31)
  • 视频:8-6 -Stream Grouping其他 (01:42)

 

第9章 Storm可靠性3 节 | 25分钟

本章节将从如下方面来讲解Storm框架的可靠性:Worker进程、Supervisor进程、nimbus进程、节点、以及消息处理的确认机制(ack/fail)。本章节是面试过程中经常会被考核到的。

  • 视频:9-1 -课程目录 (01:53)
  • 视频:9-2 -Storm进程级别的容错 (10:18)
  • 视频:9-3 -Storm的ack和fail机制 (12:08)

 

第10章 DRPC6 节 | 69分钟

本章节将讲解什么是RPC机制、Hadoop中的RPC使用介绍、如何开发Storm的基于本地和远程模式的DPRC编程

  • 视频:10-1 -课程目录 (01:37)
  • 视频:10-2 -RPC原理图解 (13:56)
  • 视频:10-3 -基于Hadoop的RPC实现.mp4 (19:09)
  • 视频:10-4 -Storm DRPC概述 (09:55)
  • 视频:10-5 -Storm Local DRPC开发 (10:51)
  • 视频:10-6 -Storm Remote DRPC及客户端代码开发 (12:33)

 

第11章 Storm整合其他大数据框架的使用12 节 | 96分钟

本章节将讲解Storm如何整合Redis、JDBC、HDFS、HBase、ES等常用的大数据框架综合使用。在生产环境中,Storm都是需要整合周边框架一起配合使用,各自完成自己的职责,进而完成大数据的实时流处理项目

  • 视频:11-1 -课程目录 (01:24)
  • 视频:11-2 -Storm整合Redis使用概述 (11:12)
  • 视频:11-3 -Storm整合Redis编程开发 (09:37)
  • 视频:11-4 -Storm整合jdbc概述 (10:52)
  • 视频:11-5 -Storm整合JDBC编程开发 (06:24)
  • 视频:11-6 -Storm整合HDFS使用概述 (16:37)
  • 视频:11-7 -HDFS环境快速搭建 (03:22)
  • 视频:11-8 -Storm整合HDFS编程开发 (09:10)
  • 视频:11-9 -Storm整合HBase概述 (06:24)
  • 视频:11-10 -HBase环境快速搭建 (05:49)
  • 视频:11-11 -Storm整合HBase编程开发 (13:00)
  • 视频:11-12 -Storm整合Elasticsearch概述 (01:43)

 

第12章 Storm综合项目实战20 节 | 165分钟

本章节将带领大家使用Logstash+Kafka+Storm+高德地图来实现基于一个交通数据的热力图的实时展示项目,通过该项目使得大家能够具备和掌握如何使用Storm来架构一个实时流处理项目的能力

  • 视频:12-1 -课程目录 (01:50)
  • 视频:12-2 -项目概述 (06:58)
  • 视频:12-3 -如何采集实时区域人流量数据.mp4 (12:14)
  • 视频:12-4 -项目架构 (08:58)
  • 视频:12-5 -高德地图API基本使用 (17:25)
  • 视频:12-6 -高德地图API常用工具介绍 (06:32)
  • 视频:12-7 -高德地图热力图静态数据展示 (08:46)
  • 视频:12-8 -Storm整合Kafka原理 (09:37)
  • 视频:12-9 -Storm整合Kafka功能开发 (13:37)
  • 视频:12-10 -Storm整合Kafka功能测试 (11:55)
  • 视频:12-11 -Logstash和Kafka的整合注意事项详解 (09:23)
  • 视频:12-12 -数据源产生器开发 (04:58)
  • 视频:12-13 -打通整条实时流处理流程链路 (09:20)
  • 视频:12-14 -项目处理及表结构设计 (08:34)
  • 视频:12-15 -Storm处理结果存储到数据库中 (03:49)
  • 视频:12-16 -通过SQL完成我们的最终结果统计 (05:59)
  • 视频:12-17 -基于SpringBoot构建Web项目 (10:11)
  • 视频:12-18 -动态获取数据并在高德地图上展示出热力图 (05:40)
  • 视频:12-19 -添加统计的时间范围并在热力图上展示 (03:31)
  • 视频:12-20 -项目扩展 (04:55)

 

第13章 课程总结1 节 | 9分钟

对课程回顾总结

  • 视频:13-1 课程总结及后续课程计划 (08:58)

 

〖视频截图〗:

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注